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Abstract. A one-dimensional model of interacting electrons with on-site U , nearest-neighbor V , and pair-
hopping interaction W is studied at half-filling using the continuum limit field theory approach. The ground
state phase diagram is obtained for a wide range of coupling constants. In addition to the insulating
spin-density wave (SDW) and charge-density wave (CDW) phases for large U and V , respectively, we
identify a bond-charge-density-wave (BCDW) phase W < 0, |U − 2V | < |2W | and a bond-spin-density-
wave (BSDW) for W > 0, |U − 2V | < W . The possibility of bond-located ordering results from the
site-off-diagonal nature of the pair-hopping term and is a special feature of the half-filled band case.
The BCDW phase corresponding to an enhanced Peierls instability in the system. The BdSDW is an
unconventional insulating magnetic phase, characterized by a gapless spin excitation spectrum and a
staggered magnetization located on bonds between sites. The general ground state phase diagram including
insulating, metallic, and superconducting phases is discussed. A transition to the ηπ-superconducting phase
at |U − 2V | � 2t ≤W is briefly discussed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.Hf Non-Fermi-liquid ground
states, electron phase diagrams and phase transitions in model systems – 71.10.Fd Lattice fermion models
(Hubbard model, etc.)

1 Introduction

The one dimensional (1D) extended Hubbard model with
nearest-neighbor repulsion V , in addition to the on-site
repulsion U (hereafter U −V model) has been extensively
studied during the last two decades as an important theo-
retical test-bed for studying low-dimensional strongly cor-
related electron systems with rich phase structures. Con-
siderable attention has been focused on studying of the
ground state (GS) phase diagram of the U − V model at
half-filling, using analytical studies and numerical simu-
lations [1–7]. The sketch of the phase diagram consists
of a Mott insulating phase (U > 2|V |) with dominat-
ing spin-density wave correlations, an insulating long-
range-ordered (LRO) charge-density-wave (CDW) phase
(2V > U > 0), and metallic phases with dominating sin-
glet (SS) and triplet (TS) superconducting correlations.
In the physically most interesting region of repulsive in-
teractions (U, V > 0), the weak-coupling perturbative
renormalization group studies [1,2] show that there is
a continuous phase transition between SDW and CDW
along the line U = 2V . In the strong coupling limit
(U, V � 1) the SDW-CDW transition is discontinuous
(first order) and the phase boundary is slightly shifted
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away from the line U = 2V [3]. Estimates for the location
of the tricritical point, where the nature of the transi-
tion changes, have ranged from Uc ' 1.5 to Uc ' 5 (and
Vc ' Uc/2) [4]. Recently increased interest towards the
U − V Hubbard model was triggered by Nakamura [5],
who found numerically that for small to intermediate val-
ues of U and V , the SDW and CDW phases are medi-
ated by the bond-ordered charge-density-wave (BCDW)
phase. The SDW-CDW transition splits into two separate
transitions: (i) a Kosterlitz-Thouless spin gap transition
from SDW to BCDW and (ii) a continuous transition from
BCDW to CDW.

An analogous sequence of phase transitions in the
vicinity of the U = 2V line is the intrinsic feature of
extended U − V Hubbard models with bond-charge cou-
pling [8,9]. The bond located ordering in these models is
directly connected with the site-off-diagonal nature of the
bond-charge coupling.

Models of correlated electrons with bond-charge cou-
pling have currently attracted a great interest as mod-
els showing unconventional, “kinematical” mechanisms
of superconducting correlations. Among others, one-
dimensional models of correlated electrons with pair-
hopping interaction are the subject of current stud-
ies [10–19]. In this paper we consider the ground state
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phase diagram of extended U −V Hubbard model supple-
mented with the pair hopping term. The Hamiltonian of
the model is given by

H = −t
∑
n,σ

(
c†n,σcn+1,σ + c†n+1,σcn,σ

)
− µ

∑
n,σ

c†n,σcn,σ

+
1
2
U
∑
n,σ

ρ̂n,σρ̂n,−σ + V
∑
n

ρ̂nρ̂n+1

+W
∑
n

(
c†n,↑c

†
n,↓cn+1,↓cn+1,↑ + h.c.

)
, (1)

where ρ̂n,σ = c†n,σcn,σ, ρ̂n =
∑
σ ρ̂n,σ, and c†n,σ (cn,σ) de-

notes the creation (annihilation) operator for an electron
with spin σ at site n. In equation (1), t and µ denote the
hopping integral and the chemical potential respectively,
with U being the on-site Coulomb-Hubbard repulsion and
V the intersite interaction. W is the pair hopping interac-
tion.

It is notable that the U , V , and W terms could be
obtained from the same general tight-binding Hamilto-
nian [20] by focusing on a selected term of the two-particle
interaction. The sign of the Coulomb-driven coupling con-
stants is typically repulsive U, V, W > 0, and usually
W � U, V . However, below we will treat these parameters
as the effective (phenomenological) ones, assuming that
they include all the possible contributions and renormal-
izations coming from the strong electron-phonon couplings
or from the couplings between electrons and other elec-
tronic subsystems. In particular, the effective pair-hopping
term can originate from the coupling of electrons with in-
termolecular vibrations [21], or from the on-site hibridiza-
tion term in a generalized periodic Anderson model [22].

Interest in models with pair-hopping coupling comes
from the unusual mechanisms of Cooper pairing provided
by this interaction. In the absence of the on-site and
nearest-neighbor couplings (U = V = 0), the model equa-
tion (1) reduces to the Penson-Kolb (PK) model [10].
The PK model is possible the simplest model which cap-
tures the essential physics of an electron system show-
ing the η-superconductivity in the ground state. In the
η-paired state, the eigenstates of the correlated electrons
are constructed exclusively in terms of doublon (on-site
singlet pair) creation operators [23]. These η-pairing states
show off-diagonal long-range order [24], which in turn im-
plies the Meissner effect and flux quantization [24–26], i.e.
superconductivity. Usually consider two different realiza-
tions of the η-paired state, constructed in terms of zero
size Cooper pairs with center-of-mass momentum equal
to zero (η0-pairing) and π (ηπ-pairing), respectively. In
the case of an “attractive” (W < 0) pair-hopping interac-
tion the PK model describes a continuous evolution of the
usual BCS type superconducting state at |W | � t into a
local pair η0-superconducting state at |W | /t → ∞ [11].
In the case of repulsive (W > 0) pair-hopping interac-
tion, in contrast, the transition into the ηπ-paired state
takes place at finite Wc and is of first order (level-crossing
type) [13,14,16,19].

The η0-superconductivity is realized in the ground
state of the Hubbard model on a cubic lattice only at

infinite on-site attraction [27]. In the case of finite U the
ground state of the Hubbard model is of the η0-pairing
type on a very particular lattice and in the restricted range
of band-fillings [28].

Shortly after Yang’s paper [23], the whole class of ex-
actly solvable extended Hubbard models showing a true
ODLRO and η-superconductivity in the ground state for
a finite on-site interaction were proposed [29–39]. These
models include besides the U − V − W terms, also the
correlated-hopping (X), exchange and, in some cases the
three body interaction. The exact solutions show the ηπ
superconducting ordering in these models at W > 0 but
W + 2V = 0 [34,37]. Unfortunately, the exact solutions
are available if the physical parameters satisfy constraints,
which are fulfilled only at X 6= 0 [34,37]. Thus, although
the exact solutions give us an important hint to search
the ηπ superconducting ordering in the W > 0 sector
of the phase diagram, they do not provide us with un-
derstanding of the phase diagram of the U − V − W
model (1) in the physically most relevant region of pa-
rameters U, V � W > 0. In this article we focus our
studies on this sector of the model parameters.

In this communication we present the weak-coupling
ground state phase diagram of the model equation (1).
As we show in this paper, the “attractive” (W > 0) pair-
hopping coupling enlarges the region of coupling constant
corresponding to the metallic phase with dominating SS
and TS instabilities. However, in the repulsive sector of the
phase diagram, along the line U = 2V > 0, only the insu-
lating LRO BCDW phase, is realized at |U − 2V | < |W |.
In the case of a “repulsive” (W > 0) pair-hopping cou-
pling, the BSDW phase corresponding to a bond located
staggered magnetization is together with the CDW the
most divergent instability in the system. We also present
quantitative arguments in favour of an additional phase
transition at W ' 2t from the insulating BSDW to the
ηπ-superconducting phase.

The outline of the paper is as follows: In Section 2
we present the continuum limit bosonized version of the
model. In Section 3 we discuss the weak coupling phase
diagram. Section 4 is devoted to a discussion of the ground
state phase diagram and a summary.

2 Continuum limit theory and bosonization

In this section we derive the low-energy effective field the-
ory of the lattice model equation (1) at half-filling. Con-
sidering the weak-coupling case |U |, |V |, |W | � t, we lin-
earize the spectrum and pass to the continuum limit by
use of the mapping

a
−1/2
0 cn,σ → inRσ(x) + (−i)nLσ(x). (2)

Here x = na0, a0 is the lattice spacing, and Rσ(x) and
Lσ(x) describe right-moving and left-moving particles, re-
spectively. These fields can be bosonized in a standard
way [40]:

Rσ(x) = (2πa0)−1/2ei
√

4πΦR,σ(x), (3)

Lσ(x) = (2πa0)−1/2e−i
√

4πΦL,σ(x), (4)
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where ΦR(L),σ(x) are the right (left) moving Bose fields.
We define Φσ = ΦR,σ+ΦL,σ and introduce linear combina-
tions, ϕc = (Φ↑ + Φ↓)/

√
2 and ϕs = (Φ↑ − Φ↓)/

√
2, to de-

scribe the charge and spin degrees of freedom, respectively.
Then, after a rescaling of fields and lengths, we rewrite the
bosonized version of the Hamiltonian (1) in terms of two
decoupled quantum SG theories, H = Hc +Hs, where

Hc(s) =
∫

dx
{
vc(s)

2
[
(∂xϕc(s))2 + (∂xϑc,(s))2

]
+
mc(s)

πa2
0

cos
(√

8πKc(s)ϕc(x)
)}
· (5)

Here θc(s)(x) are the dual counterparts of the fields
φc(s)(x): ∂xθc(s) = Πc(s) where Πc(s) is the momentum
conjugate to the field φc(s). Here we have defined

Kc = (1− gc)−1/2 ' 1 +
1
2
gc, mc = − gu

2π
, (6)

Ks = (1− gs)−1/2 ' 1 +
1
2
gs, ms =

g⊥
2π
, (7)

vc(s) = vFK
−1
c(s) are the velocities of the charge and spin

excitations, vF = 2ta0(1 −W/πt), and the small dimen-
sionless coupling constants are given by

gs = g⊥ = (U − 2V + 2W )/πvF , (8)
gc = −(U + 6V + 2W )/πvF , (9)
gu = (U − 2V − 2W )/πvF . (10)

The relation between Kc (Ks), mc (ms), and gc (gs), gu
(g⊥) is universal in the weak coupling limit.

In obtaining (5) the strongly irrelevant term ∼
cos(
√

8πKcϕc) cos(
√

8πKsϕs) describing umklapp scat-
tering processes with parallel spins was omitted. The map-
ping of the Hamiltonian (1) onto the quantum theory
of two independent charge and spin Bose fields, allows
a study of the ground state phase diagram of the initial
electron system using the far-infrared properties of the
bosonic Hamiltonians (5). Depending on the relation be-
tween the bare coupling constants K and m the infrared
behavior of the quantum SG field exhibits two different
regimes [41]:

For |m| ≤ 2(K−1) we are in the weak coupling regime;
the effective mass M → 0. The low energy (large dis-
tance) behavior of the gapless charge (spin) excitations is
described by a free scalar field. The corresponding corre-
lations show a power law decay〈

ei
√

2πK∗ϕ(x)e−i
√

2πK∗ϕ(x′)
〉
∼ |x− x′|−K

∗
, (11)〈

ei
√

2π/K∗θ(x)e−i
√

2π/K∗θ(x′)
〉
∼ |x− x′|−1/K∗

, (12)

and the only parameter controlling the infrared behavior
in the gapless regime is the fixed-point value of the effec-
tive coupling constants K∗c(s).

For |m| > 2(K − 1) the system scales to a strong
coupling regime: Depending on the sign of the bare mass
mc(s), the effective mass Mc(s) → ±∞, which signals the

crossover into a strong coupling regime and indicates the
dynamical generation of a commensurability gap |Mc(s)|
in the charge (spin) excitation spectrum. The field ϕc(s)
gets ordered with the vacuum expectation values [42]

〈
ϕc(s)

〉
=

{√
π/8Kc(s) (m > 0)

0 (m < 0)
· (13)

The ordering of these fields determines the symmetry
properties of the possible ordered ground states of the
fermionic system.

Using equations (8–10) and (13), one easily finds that
there is a gap in the spin excitation spectrum (Ms →
−∞) for

U − 2V + 2W < 0.
In this sector of coupling constants, the ϕs field gets
ordered with vacuum expectation value 〈ϕs〉 = 0. At
U − 2V + 2W ≥ 0 the spin excitations are gapless and
the low-energy properties of the spin sector are described
by the free Bose field system with the fixed-point value of
the parameter K∗s = 1.

The charge sector is gapped for

U > max{2V + 2W,−2|V |}
and for

U < 2V + 2W but 2V +W > 0.

In the former caseMc → −∞ and the vacuum expectation
value of the charge field 〈ϕs〉 = 0, while in the latter case
Mc →∞ and 〈ϕs〉 =

√
π/8Kc.

In the sectors of coupling constants corresponding to
the gapless charge excitation spectrum the properties of
the charge degrees of freedom are described by the free
Bose field

Hc =
vc
2

[
K∗c (∂xϕc)2 +

1
K∗c

(∂xϑc)2

]
,

with the fixed-point value of the parameter

K∗c ' 1 +
√

2(U + 2V )(W + 2V )/πvF . (14)

Especially important is the line U = 2V +2W correspond-
ing to the fixed-point line mc = 0,Kc − 1 < 0. Here the
infrared properties of the gapless charge sector are de-
scribed by a free massless Bose field with the bare value
of the Luttinger liquid parameter Kc.

To clarify the symmetry properties of the ground states
of the system in different sectors we introduce the fol-
lowing set of order parameters describing the short wave-
length fluctuations of the
• site-located charge and spin density:

∆CDW = (−1)n
∑
σ

ρn,σ

∼ sin
(√

2πKcϕc
)

cos
(√

2πKsϕs
)

(15)

∆SDW = (−1)n
∑
σ

σρn,σ

∼ cos
(√

2πKcϕc
)

sin
(√

2πKsϕs
)
, (16)



142 The European Physical Journal B

• bond-located charge–density:

∆BCDW = (−1)n
∑
σ

(
c†n,σcn+1,σ + h.c.

)
∼ cos

(√
2πKcϕc

)
cos
(√

2πKsϕs
)

(17)

• The bond-located spin–density:

∆BSDW = (−1)n
∑
σ

σ
(
c†n,σcn+1,σ + h.c.

)
∼ sin(

√
2πKcϕc) sin

(√
2πKsϕs

)
. (18)

In addition we consider two superconducting order param-
eters corresponding to the
• singlet and triplet superconductivity:

∆SS(x) = R†↑(x)L†↓(x) −R†↓(x)L†↑(x)

∼ exp
(

i
√

2π
Kc

θc

)
cos
(√

2πKsϕs
)
, (19)

∆TS(x) = R†↑(x)L†↓(x) +R†↓(x)L†↑(x)

∼ exp
(

i
√

2π
Kc

θc

)
sin
(√

2πKsϕs
)
. (20)

3 Weak-coupling phase diagram

With these results for the excitation spectrum and the be-
havior of the corresponding fields, equations (11–13), we
now discuss the weak-coupling ground state phase diagram
of the model (1). Below we will focus on the new phases ap-
pearing in the phase-diagram due to the effect of the pair-
hopping coupling. The phase diagram consists of 5 sectors
(see Figs. 1 and 2). Sectors A,B,C1, C2 are present in the
phase diagram of the U − V Hubbard model [2].

Sector A
• U > max{2V + 2W,−2|V |},

corresponds to the ordinary Mott insulating phase: The
charge excitation spectrum is gapped, the spin sector is
gapless. The ordering of the field ϕc with vacuum expec-
tation value 〈ϕc〉 = 0 leads to a suppression of the su-
perconducting, CDW, and BSDW correlations. The SDW
and dimer correlations show a power-law decay at large
distances

〈∆SDW(x)∆SDW(x′)〉 ∼ 〈∆BCDW(x)∆BCDW(x′)〉
∼ |x− x′|−1

. (21)

Sector B
• U < 2V − 2|W | and 2V +W > 0

corresponds to the long-range ordered CDW insulating
phase. The charge and spin excitations are gapped. The
fields ϕc(s) get ordered with vacuum expectation values
〈ϕs〉 = 0 and 〈ϕc〉 =

√
π/8Kc, and

〈∆CDW(x)∆CDW (x′)〉 ∼ const. (22)

Sector C1

U

2V

 S D W   +   B C D W

2V=-W

BCDW

TS +SS

CDW (LRO)

(LRO)

A

B

C2

D

U=2V-2W

U=-2V

C1

SS

U=2V+2W

Fig. 1. The ground state phase diagram of the 1D U −V −W
model for the case of a half-filled band and W < 0. Solid lines
separate different phases: A. (SDW + BOW)-Mott insulating
phase with an identical power-law decay of spin-density-wave
and Peierls correlations. B. CDW (LRO)-long range ordered
(LRO) charge density wave phase. C1. Singlet superconduct-
ing phase. C2. Metallic phase with dominating singlet and
triplet superconducting correlations. D. BCDW-LRO dimer-
ized (Peierls) phase.

U

2V

TS +SS

CDW (LRO)

SC

B

U=2V-2W

U=-2V

A

 S D W   +   B C D W

U=2V+2W

C1

SS

C2

TS +SS

2V=-W

CDW + BSDW

D1

η−

Fig. 2. The ground state phase diagram of the 1D U −V −W
model for the case of a half-filled band and W > 0. Solid lines
separate different phases: sectors A, B, C1 and C2 are the same
as in the Figure 1. Sector D1: (CDW + BSDW)-insulating
phase with an identical power-law of CDW and bond-located
spin-density-wave correlations. The dot-dashed line marks a
transition to the ηπ-superconducting phase.

• U < min{2V − 2W ;−2V } and 2V +W < 0

corresponds to the Singlet Superconducting (SS) phase.
There a gap exists in the spin excitation spectrum and
the spin field is ordered with 〈ϕs〉 = 0. The charge exci-
tation spectrum is gapless with the fixed point value of
the parameter K∗c > 1. The SDW, BSDW, and the TS in-
stabilities are suppressed. The CDW, BSDW, and the SS
instabilities show a power-law decay at large distances.
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However since K∗c > 1 the SS instability

〈∆SS(x)∆SS(x′)〉 ∼ |x− x′|−1/Kc (23)

dominates in the ground state.
Sector C2
• −2|V | < U < 2V − 2W and 2V +W < 0

corresponds to the Luttinger liquid phase with dominat-
ing superconducting instabilities. None of the conditions
of charge and spin gap is satisfied here. In this sector,
the system shows the properties of a Luttinger liquid with
dominating superconducting instabilities TS and SS. The
singlet superconducting and triplet superconducting cor-
relations show the same power law decay at large distances
and the TS instability dominates because of the weak log-
arithmic corrections [2].

Finally we analyze the sectors describing the new
phases. These new phases essentially appear along the
SDW-CDW transition line U = 2V > 0 of the U − V
Hubbard model. In the weak-coupling limit, the transi-
tion from the Mott insulating phase at U > 2V to the
CDW insulator at U < 2V is mediated by the Luttinger
liquid phase with gapless spin and charge excitations. AT
U = 2V the Mott insulator charge gap closes and at
U − 2V < 0 the charge and the spin gap opens simulta-
neously. In the very presence of the pair-hopping interac-
tion, the SDW-CDW transition splits into two transitions:
Along the line U = 2V − 2W the spin gap opens, while at
U = 2V + 2W the Mott insulator charge gap closes, and
for U < 2V + 2W the CDW charge gap opens. In the case
of an attractive pair-hopping interaction W < 0 (Fig. 1)
the spin gap opens in the presence of a Mott insulator
charge gap. Therefore, in sector D
• |U − 2V | < 2|W | 2V +W > 0,

the charge and spin channels are gapped and both, charge
and spin fields are ordered, 〈ϕc〉 = 〈ϕs〉 = 0. In this case
the long-range ordered BOW phase

〈∆BCDW(x)∆BCDW(x′)〉 ∼ const. (24)

is realized in the ground state.
In the case of a repulsive pair-hopping coupling W > 0

(Fig. 2), the transition within the charge degrees of free-
dom, takes place before the spin gap opens. Therefore, in
sector D1
• |U − 2V | < 2|W | and U + 2V > 0,

the generation of a gap in the charge excitation spectrum,
accompanied by the ordering of the field ϕc with vacuum
expectation value 〈ϕc〉 =

√
π/8Kc , leads to a suppression

of the superconducting, SDW, and BCDW ordering. The
CDW and BSDW correlations show a power-law decay at
large distances

〈∆CDW(x)∆CDW(x′)〉 ∼ 〈∆BSDW(x)∆BSDW(x′)〉
∼ |x− x′|−1

. (25)

Therefore, this sector of the phase diagram corresponds
to the insulating phase with coexisting CDW and BSDW
instabilities.

Let us now discuss the ηπ-superconducting phase. In
the case of pair-hopping interaction, the transition point
is determined by the competition between the single-
electron and doublon delocalization energies. After the
transition the contribution of the one-electron hopping
term to the ground state energy almost vanishes and the
ground state energy is determined by the created strongly
correlated two-particle ηπ-pair band [16,19]. Simultane-
ously, after the transition the spin gap opens in the sys-
tem while the charge gap (at half-filling) closes [13]. In
the case of the PK model the transition point Wc(U =
V = 0) ' 1.8t [16], while in the case of the on-site Hub-
bard repulsion, Wc(V = 0) ' 1.8t + αU , where α is
of the order of unity [19]. In both cases the insulating
(CDW +BSDW) phase is unstable toward transition to
the ηπ-superconducting state [9,17,19]. Due to the finite-
bandwidth nature of the transition to a ηπ-paired state, it
could not be consistently studied within the continuum-
limit (infinite band) approach. Nevertheless, the existence
of a transition is clearly traced in the additive renormaliza-
tion of the Fermi velocity (bandwidth) by the pair-hopping
term vF = 2ta0(1 − W/πt). In the narrow stripe along
the frustration line |U − 2V | � W , the effects of the on-
site and nearest-neighbor repulsion cancel each other. The
dimensionless coupling constants controlling the spin de-
grees of freedom (8) are exactly the same as in the case of
the PK model. Therefore we conclude that along the frus-
tration line U = 2V an additional phase transition with
increasing W from the BSDW to the ηπ-superconducting
takes place with Wc ' Wc(U = V = 0) ' 2t. Numerical
studies of this sector of the phase diagram are currently
in progress and will be published elsewhere.

4 Discussion and summary

To summarize, we have presented the weak-coupling
ground state phase diagram for 1D extended U − V Hub-
bard with pair-hopping in the case of a half-filled band.
We have shown that the model has a very rich phase di-
agram which includes the singlet-superconducting phase,
a metallic phase with dominating SS and TS instabili-
ties and four different insulating phases corresponding to
the Mott antiferromagnet, the CDW insulator, the bond-
ordered CDW and the bond-ordered SDW phase. In ad-
dition, we argued for the existence of a phase transition
to the ηπ-superconducting phase within the narrow stripe
at |U − 2V | � 2t ≤W .
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35. R.Z. Bariev, A. Klümper, J. Zittartz, Europhys. Lett. 32,

85 (1995)
36. M. Quaisser, A. Schadschneider, J. Zittartz, Europhys.

Lett. 32, 179 (1995)
37. A. Montorosi, D. Campbell Phys. Rev. B 53, 5153 (1996)
38. A. Schadschneider, G. Su, J. Zittartz, Z. Phys. B 102, 397

(1997)
39. F. Dolcini, A. Montorsi, Phys. Rev. B 62, 2315 (2000)
40. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosoniza-

tion and Strongly Correlated Systems (Cambridge Univer-
sity Press, 1999)

41. P. Wiegmann, J. Phys. C 11, 1583 (1978)
42. K.A. Muttalib, V.J. Emery, Phys. Rev. Lett. 57, 1370

(1986)


